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ARTICLE INFO ABSTRACT
Article history: Particle swarm optimization (PSO) has been shown to yield good performance for solving
Available online 31 March 2011 various optimization problems. However, it tends to suffer from premature convergence

when solving complex problems. This paper presents an enhanced PSO algorithm called
GOPSO, which employs generalized opposition-based learning (GOBL) and Cauchy
mutation to overcome this problem. GOBL can provide a faster convergence, and the
Cauchy mutation with a long tail helps trapped particles escape from local optima. The pro-
posed approach uses a similar scheme as opposition-based differential evolution (ODE)
with opposition-based population initialization and generation jumping using GOBL.
Experiments are conducted on a comprehensive set of benchmark functions, including
rotated multimodal problems and shifted large-scale problems. The results show that
GOPSO obtains promising performance on a majority of the test problems.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Many real world problems can be converted into optimization problems. As their complexity increases, traditional
optimization algorithms cannot sufficiently satisfy the problem requirements and more effective algorithms are needed.
An unconstrained minimization problem can be formulated as follows:

min f(x),

where x = [x1,X5,...,Xp] and D is the dimension of the problem and f is some evaluation function.

Particle swarm optimization (PSO) is a relatively new optimization technique, which was developed by Kennedy and
Eberhart [17]. Although PSO shares many common issues with other population-based algorithms, it differs from them by
introducing a velocity vector. Solutions (called particles) interact with each other in the population (called swarm) by learn-
ing and sharing experiences with other particles. These phenomena are inspired from the flocking behavior of birds and fish.

PSO has obtained good performance on many optimization problems [23]. However, it may easily become trapped at local
minima. In order to enhance the performance of PSO on complex problems, this paper presents a novel PSO algorithm called
GOPSO by using GOBL and Cauchy mutation. The GOBL is a generalized opposition-based learning algorithm (OBL) [32]
introduced in our previous work [38]. The main idea behind GOBL is to transform solutions in the current search space to
a new search space. By simultaneously considering the solutions in the current search space and the transformed search
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space, GOBL can provide a higher chance of finding solutions which are closer to the global optimum. The Cauchy mutation
with a long tail helps trapped particles to escape. The GOPSO uses similar procedure of opposition-based differential evolu-
tion DE (ODE) when also using opposition-based population initialization and dynamic generation jumping with GOBL [29].
Experimental simulations on 18 well-known benchmark functions, including 6 shifted and large-scale problems, show that
GOPSO obtains better performance on the majority of the test problems.

The rest of the paper is organized as follows. In Section 2, the standard PSO algorithm is briefly introduced. Section 3 pre-
sents some reviews of related works. Section 4 gives a simple description of OBL. The GOBL and its analysis are given in Sec-
tion 5. Section 6 explains an implementation of the proposed algorithm, GOPSO. Section 7 presents a comparative study
among GOPSO and eight other PSO variants on 12 benchmark problems. In Section 8, GOPSO and its enhanced version
are compared on 6 shifted and large scale problems. Finally, the work is concluded in Section 9.

2. Particle swarm optimization

PSO is a population-based search algorithm that starts with an initial population of randomly generated particles [16]. For
a search problem in a D-dimensional space, a particle represents a potential solution and each has a velocity and a position.
PSO remembers both the best position found by all particles and by each particle during the search process. The velocity v;
and position x;; of the jth dimension of the ith particle are updated according to Eqgs. (1) and (2):

vy(t +1) = w- v;(t) + c1 - rand1y; - (pbest(t) — X;;(t)) + ¢ - rand2;; - (gbest;(t) — x;(t)), (1)

Xij(t+1) =X,‘j(t)+7/,‘j(t+]), (2)

wherei=1,2,...,is the particle’s index, X; = (Xj1,Xi2,. . .,X;p) is the position of the ith particle; V; = (v;1, v, . . ., Uip) represents the
velocity of the ith particle; the pbest; = (pbest;;,pbest, ,...,pbest;p) is the best previous position yielding the best fitness value
for the ith particle; and gbest = (gbest,,gbest, ,...,gbestp) is the global best particle found by all particles so far. The inertia
factor w was proposed by Shi and Eberhart [30], rand1; and rand2; are two random numbers generated independently with-
in the range of [0,1], c; and c; are two learning factors which control the influence of the social and cognitive components,
and t=1,2,... indicates the iteration number.

3. Related works

Since introducing of PSO, it has attracted many researchers to work on improving its performance. In the last decade,
many variants of PSO have been proposed. A brief overview of these variants is presented in the following.

Shi and Eberhart [30] introduced a parameter called inertia weight w for the original PSO. The inertia weight is used to
balance the global and local search abilities. From the analysis of [30], a linearly decreasing w over the searching process is a
good choice. Clerc and Kennedy [7] proposed a constriction factor k in PSO, which can guarantee the convergence and
improve the convergence rate. Bergh and Engelbrecht [2] presented a comprehensive study on the parameters of PSO,
and provided a formal proof that each particle converges to a stable point.

Kennedy [18] analyzed the effects of neighborhood topology on PSO, and the presented results showed that PSO with a
small neighborhood may perform better on complex problems, while PSO with a large neighborhood may perform better on
simple problems. Parsopoulos and Vrahaits [24] proposed a unified PSO (UPSO) by combining the global and local versions of
PSO. Mendes and Kennedy [22] introduced a fully informed PSO (FIPS) by using a modified velocity updating strategy. Peram
et al. [25] presented a variant of PSO called distance-ration-based PSO (FDR-PSO), which employs a new velocity updating
method. Bergh and Engelbrecht [1] proposed a cooperative approach to PSO (CPSO-H) for solving multimodal problems.
Liang et al. [19] introduced a comprehensive learning PSO (CPSO) to learn other particles’ experiences in different
dimensions.

Chu et al. [5,6] proposed a parallel PSO by employing a novel communication strategy. Cui et al. [8] presented a fast par-
ticle swarm optimization (FPSO). FPSO does not evaluate all new positions owning a fitness and associated reliability value of
each particle of the swarm, and only the reliability value is evaluated using the true fitness function if the reliability value is
below a threshold. Cai et al. [4] introduced a self-adjusting cognitive selection strategy in PSO, which employs an information
index to judge the value for cognitive coefficient of each particle associated with the best location itself. Tripathi et al. [33]
proposed a hybrid PSO algorithm with time variant inertia and acceleration coefficients to solve multi-objective optimization
problems. Du and Li [10] presented a multi-strategy ensemble PSO algorithm in dynamic environments. Wang and Yang [41]
combined a preference order ranking mechanism with PSO for multi-objective optimization.

Wang et al. [37] proposed a hybrid PSO algorithm called opposition-based PSO with Cauchy mutation (OPSO), which em-
ployed an opposition operator and a Cauchy mutation operator. In order to solve large scale problems, Hsieh et al. [15] pre-
sented an efficient population utilization strategy for PSO (EPUS-PSO), which introduced a population manager and a
solution sharing strategy. In EPUS-PSO, the population size is variable. The population manager can increase or decrease par-
ticle numbers according to the status of searching process.
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Although some opposition-based PSO algorithms [20,37] have been proposed, this paper uses a generalized OBL (GOBL) in
PSO. The proposed approach (GOPSO) uses similar schemes of ODE for opposition-based population initialization and gen-
eration jumping but this time by utilizing GOBL instead of OBL.

4. Opposition-based learning

Opposition-based Learning (OBL) [32] is a new concept in computational intelligence, and has been proven to be an effec-
tive concept to enhance various optimization approaches [21,26-29,35]. When evaluating a solution x to a given problem,
simultaneously computing its opposite solution will provide another chance for finding a candidate solution which is closer
to the global optimum.

Opposite number [26]: let x € [a,b] be a real number. The opposite of x is defined by:

X'=a+b-—x 3)

Similarly, the definition is generalized to higher dimensions as follows.
Opposite point [26]: let X =(x1,x2 ,...,Xp) be a point in a D-dimensional space, where x4,X;, ,...,xp € R and x; € [a; bj],
j€1,2,...,D. The opposite point X" = (xi,x5,...,x}) is defined by:

X =a +bj —x;. (4)

By applying the definition of opposite point, the opposition-based optimization can be defined as follows.

Opposition-based optimization [26]: let X = (x1,xa,...,Xp) be a point in a D-dimensional space (i.e., a candidate solution).
Assume f{X) is a fitness function which is used to evaluate the candidate’s fitness. According to the definition of the opposite
point, X* = (x;,x3,...,X}) is the opposite of X = (x1,x,,...,xp). If f(X*) is better than f{X), then update X with X*; otherwise keep
the current point X. Hence, the current point and its opposite point are evaluated simultaneously in order to continue with
the fitter one.

5. A generalized opposition-based learning (GOBL)
5.1. The concept of GOBL

In our previous work [38], a generalized OBL, called GOBL, is proposed by transforming candidates in current search space
to a new search space. By simultaneously evaluating the candidates in the current search space and transformed search
space, it can provide more chance of finding candidate solutions closer to the global optimum.

Generalized OBL: let x be a solution in the current search space S, x € [a,b]. The new solution x* in the transformed space S*
is defined by [38]:

X' =A—-X, (5)

where A is a computable value and x* € [A — b,A — a]. It is obvious that the differences between the current search space S
and the transformed search space S* are the centers of search spaces. Because the size of search range (indicates the size of
intervals) of S and S* are b — a, and the center of current search space moves from %2 to 22=8=b after using GOBL.

Similarly, the definition of GOBL is generalized to a D-dimensional search space as follows.

X =A-x;, (6)

where j=1,2,...,D.

By applying GOBL, we not only evaluate the current candidate x, but also calculate its transformed candidate x*. This will
provide more chance of finding candidate solutions closer to the global optimum.

However, GOBL could not be suitable for all kinds of optimization problems. For instance, the transformed candidate may
jump away from the global optimum when solving multimodal problems. To avoid this case, a new elite selection mecha-
nism based on the population is used after the transformation. The elite selection mechanism is described in Fig. 1. Assume
that the current population P(t) has three particles, X1, X, and X3, where t is the index of generations. According to the concept
of GOBL, we get three transformed particles x;, x5 and x; in population GOP(t). Then, we select three fittest particles from P(t)
and GOP(t) as a new population P'(t). It can be seen from Fig. 1, x;, x5 and x; are three new members in P'(t). In this case, the
transformation conducted on x; did not provide another chance of finding a candidate solution closer to the global optimum.
With the help of the elite selection mechanism, x; is eliminated from the next generation.

Let A = k(a + b), where k is a real number. The GOBL model is defined by:

x =k(a+b) —x. (7)

According to the suggestions of [38], a random value of k obtains good performance. In Eq. (7), k is a random number in [0, 1],
x € [a,b] and x* € [k(a + b) — b,k(a + b) — a]. The center of the transformed search space is at a random position in [— %2, 5],
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Fig. 1. The elite selection mechanism based on population.

For a given problem, it is possible that the transformed candidate may jump out of the box-constraint [Xin, Ximax]. When
this happens, the GOBL will be invalid, because the transformed candidate is infeasible. To avoid this case, the transformed
candidate is assigned to a random value as follows.

x* =rand(a,b), If x* < Xpin|X* > Xnax, (8)
where rand(a,b) is a random number in [a,b], and [a,b] is the interval boundaries of current population.
5.2. GOBL-based optimization
By staying within variables’ interval static boundaries, we would possibly jump outside of the already shrunken search

space and so the knowledge of the current converged search space would be lost. Hence, we calculate opposite particles
by using dynamically updated interval boundaries [a;(t),bj(t)] as follows [29].

X;:l' = k[aj(t) + bj(t)] — Xij, (9)
a;(t) = min(Xi;(t)),  bj(t) = max(X;(t)), (10)
Xi; = rand(q;(t), b;(t)), If Xi; < Xonin|Xi; > Ximax, i=1,2,...,ps, j=1,2,....D, k=rand(0,1), (11)

where X;; is the jth vector of the ith candidate in the population, X;; is the transformed candidate of X;;, aj(t) and by(t) are the
minimum and maximum values of the jth dimension in current population, respectively, rand(a;(t), b(t)) is a random number
in [aj(£),bj(t)], [Xmin,Xmax] is the box-constraint, ps is the population size, rand(0,1) is a random number in [0,1], and
t=1,2,..., indicates the generation number.

In our recent study [39], we experimentally explained why ODE obtains better solutions with a faster convergence rate than
standard DE. In ODE, there are two important steps, generation jumping and elite selection. The first step is beneficial for
increasing diversity and exploring more promising regions, while the second one is helpful to speed up convergence. Although
these two steps are incompatible, ODE makes a good balance between them towards searching candidate solutions. This expla-
nation is also suitable for GOPSO, because GOPSO uses similar procedure of ODE for generation jumping and elite selection.

Algorithm 1. The GOPSO Algorithm

1 Randomly initialize each particle in swarm P;
2 double k =rand(0,1);
3fori=1tops do
4 forj=1toDdo
5 GOP,'J' = k(aj + bj) — Pij;
6 end
7 Calculate the fitness value of GOP;;
8 NE++;
9 end
10 Select ps fittest particles from {P,GOP} as an initial population P;
11 While NE < MAXyg do
12 If rand(0,1) < p, then
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13 Update the dynamic interval boundaries [a;(t),b(t)] in P according to Eq. (10);
14 k =rand(0,1);
15 fori=1 to ps do

16 forj=1toD do

17 GOP,~J~=I<[aj(t)+bj(t)] 7P,‘J‘;

18 end

19 Calculate the fitness value of GOP;;

20 NE++;

21 end

22 Select ps fittest particles from {P,GOP} as current population P;
23 end

24 else

25 fori=1tops do

26 Calculate the velocity of particle P; according to Eq. (1);
27 Update the position of particle P; according to Eq. (2);
28 Calculate the fitness value of particle P;;

29 NE++;

30 end

31 end

32 Update pbest, gbest in P if needed;
33 Mutate gbest according to Eq. (14);
34 Calculate the fitness value of gbest’;
35 NE++;

36 if f(gbest') < flgbest) then

37 gbest = gbest’;

38 end

39 end

6. Enhancing PSO using GOBL (GOPSO)

The standard PSO was inspired by the social and cognitive behavior of swarms. According to Eq. (1), particles are greatly
influenced by its previous best particles and the global best particle. Once the best particle has no change in a local optimum,
all the rest particles will quickly converge to the position of the best particle. If the neighbors of the global best particle
would be added in each generation, it would extend the search space around the best particle. It is helpful for all particles
to move to the better positions. This can be accomplished by conducting a Cauchy mutation [36,37] on the global best par-
ticle at every generation. In this paper, we also employ a Cauchy mutation on the global best particle in GOPSO.

The one-dimensional Cauchy density function centered at the origin is defined by

foo=1 t

:Em’ —00 < X < 00, (12)
where t >0 is a scale parameter [11]. The Cauchy distributed function is

11
Fi(x) =+ arctan (%) (13)

The Cauchy mutation operator is defined by
gbest; = gbest; + cauchy(), (14)

where gbest; is the jth value of the global best particle in the swarm, cauchy() is a random number generated by the Cauchy
distributed function with the scale parameter of t = 1.

The proposed approach (GOPSO) uses a similar procedure to that of ODE for opposition-based population initialization and
dynamic opposition with a generalized OBL concept. The framework of GOPSO is shown in Algorithm 1, where P is the current
population, GOP is the population after using GOBL, P; is the ith particle in P, GOP; is the ith particle in GOP, k is a random num-
berin [0,1], p, is the probability of GOBL, ps is the population size, D is the dimension size, [aj(t), bi(t)] is the interval boundaries
of current population, NE is the number of function evaluations and MAXyg is the maximum number of function evaluations.

When background information of problems is unavailable, we always generate an initial population based on a uniform
probability. By using GOBL in population initialization, we can obtain fitter starting candidate solutions [29]. Steps 1-10 from
Algorithm 1 show the implementation of GOBL-based initialization for GOPSO. Besides the population initialization, we also
use GOBL in the whole evolutionary process. If the probability p, is satisfied, the transformed population GOP is calculated
and the ps fittest particles are selected from the union of the current population P and GOP; otherwise the algorithm executes
the standard PSO.
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7. Experimental studies on GOPSO
7.1. Test problems

A comprehensive set of benchmark problems, including 12 different global optimization problems, was chosen for the
following experimental studies. These functions were considered in an earlier study [19] as well. According to their proper-
ties, they are divided into three classes: unimodal and simple multimodal problems (f; — f>), unrotated multimodal problems
(fs — fg), and rotated multimodal problems (fg — fi2). All the functions used in this paper are minimization problems. A brief
description of these benchmark problems is listed in Table 1, and more details can be found in [19].

7.2. Parameter settings for the involved PSO algorithms

Experiments are conducted to compare nine PSO algorithms including the proposed GOPSO on 12 test problems with
D = 30. The algorithms are listed below.

e PSO with inertia weight (PSO-w) [30];

e PSO with constriction factor (PSO-cf) [7];

o unified PSO (UPSO) [24];

o fitness-distance-ratio based PSO (FDR-PSO) [25];

o fully informed particle swarm (FIPS) [22];

cooperative PSO (CPSO-H) [1];

comprehensive learning PSO (CLPSO) [19];
opposition-based PSO with Cauchy mutation (OPSO) [37];
our approach (GOPSO).

The parameter settings for PSO-w, PSO-cf, UPSO, FIPS, FDR-PSO, CPSO-H and CLPSO are described in [19]. In OPSO and
GOPSO, ¢y = c; = 1.49618, w = 0.72984 and the maximum velocity V,,.x was set to the half range of the search space for each
dimension. The probability of using GOBL in GOPSO and the probability of using OBL in OPSO use the same value p, = 0.3. The
above nine PSO algorithms use the same population size (ps = 40) and maximum number of evaluations (MAXyg = 200,000).
All the experiments were conducted 30 times, and the mean function error value f(x) — f(x°) (f{x°) is the global optima of f{x))
and standard deviation of the results are recorded.

7.3. Results and discussions

The results of the nine PSO algorithms on the 12 test problems are presented in Table 2, where “Mean” indicates the mean
function error value, and “Std Dev” stands for the standard deviation. Results of PSO-w, PSO-cf, UPSO, FDR-PSO, FIPS, CPSO-H
and CLPSO are taken from Table 4 in [19]. The best results among the nine algorithms are shown in bold.

As seen, GOPSO surpasses all other algorithms on functions fi, fa, f7, fio and fi,, and significantly improves the results on
functions f7, fip and fi,. GOPSO achieves the same performance as the CPSO-H on function fg, and they both are much better
than the other PSO algorithms on this problem. UPSO achieves better results than GOPSO on function f3, while GOPSO out-
performs UPSO on the remaining functions. GOPSO surpasses FDR-PSO in all test cases except for function f,. FIPS performs
better than GOPSO on functions fg and f;1, while GOPSO outperforms FIPS on the rest of the functions. GOPSO achieves better
results than CPSO-H on all test functions except for fs, f¢ and fs. CLPSO obtains better performance than GOPSO on functions
f3 and fg, while GOPSO achieves better results than CLPSO on the other functions. GOPSO outperforms OPSO on all test func-
tions except for f>. According to performance graphs given in Fig. 2, GOPSO shows very fast convergence speed.

Table 1
The 12 test functions used in the experiments, where D is the dimension of the functions, X € R" is the definition domain, and f{x°) is the minimum value of the
function.

F Name D X fix%)
fi Sphere function 30 [-100,100] 0
fo Rosenbrock’s function 30 [—2.048,2.048] 0
f3 Ackley’s function 30 [-32.768,32.768] 0
fa Griewanks’s function 30 [-600,600] 0
fs Weierstrass function 30 [-0.5,0.5] 0
fe Rastrigin’s function 30 [-5.12,5.12] 0
f7 Nocontinuous Rastrigin’s function 30 [-5.12,5.12] 0
fs Schwefel’s function 30 [-500,500] 0
fo Rotated Ackley’s function 30 [-32.768,32.768] 0
fio Rotated Griewanks’s function 30 [-600,600] 0
fn Rotated Weierstrass function 30 [-0.5,0.5] 0
fi2 Rotated Rastrigin’s function 30 [-5.12,5.12] 0




H. Wang et al./Information Sciences 181 (2011) 4699-4714 4705

Table 2
Comparison among the nine PSO algorithms on 12 test problems, where “Mean” indicates the mean function error value, and “Std Dev” stands for the standard
deviation. The best results among the nine algorithms are shown in bold.

Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

fi f f3 fa
PSO-w 9.78e-30 2.50e-29 2.93e+01 2.51e+01 3.94e-14 1.12e-14 8.13e-03 7.16e—03
PSO-cf 5.88e—100 5.40e—100 1.11e+01 1.81 1.12 8.65e—01 2.06e—02 1.90e—02
UPSO 4.17e—-87 3.15e-87 1.51e+01 8.14e-01 1.22e-15 3.16e-15 1.66e—03 3.07e-03
FDR-PSO 4.88e—102 1.53e-101 5.39 1.76 2.84e-14 4.10e-15 1.01e-02 1.23e-02
FIPS 2.69e—-12 6.84e—13 2.45e+01 2.19e-01 4.81e-07 9.17e-08 1.16e—-06 1.87e—-06
CPSO-H 1.16e-113 2.92e-113 7.08 8.01 4.93e-14 1.10e-14 3.63e-02 3.60e—02
CLPSO 1.46e—-14 1.73e-14 2.01e+01 2.98 0 0 3.14e-10 4.64e—-10
OPSO 8.05e—81 1.22e-80 9.78 6.33 1.39 1.33 1.27e-02 1.76e—-02
GOPSO 1.24e-272 0 1.48e+01 9.57e-01 3.43e-15 1.59e-15 0 0

fs fe f7 fs
PSO-w 1.30e—-04 3.30e—-04 2.90e+01 7.70 2.97e+01 1.39e+01 1.10e+03 2.56e+02
PSO-cf 4,10 2.20 5.62e+01 9.76 2.85e+01 1.14e+01 3.78e+03 6.02e+02
UPSO 9.6 3.78 6.59e+01 1.22e+01 6.34e+01 1.24e+01 4.84e+03 4.76e+02
FDR-PSO 7.49e-03 1.14e-02 2.84e+01 8.71e+01 1.44e+01 6.28e+01 3.61e+03 3.06e+02
FIPS 1.54e-01 1.48e-01 7.30e+01 1.24e+01 6.08e+01 8.35e+01 2.05e+03 9.58e+02
CPSO-H 7.82e-15 8.50e-15 0 0 1.00e-01 3.16e-01 1.08e+03 2.59e+02
CLPSO 3.45e-07 1.94e-07 4.85e—-10 3.63e-10 4.36e—-10 2.44e-10 1.27e-12 8.79e¢-13
0PSO 221 8.55e—-01 5.23e+01 1.51e+01 8.64e+01 9.86e+01 1.45e+03 3.04e+02
GOPSO 1.04e—-08 2.19e-08 1} 0 0 0 1.14e+03 1.87e+02

fo fio fia fiz
PSO-w 2.80e—-01 5.86e—01 1.64e-01 9.40e—-02 6.66e—01 7.12e-01 9.90 3.76
PSO-cf 1.19 1.13 1.38e-01 1.07e-01 217 1.30 1.44e+01 6.04
UPSO 1.00 9.27e-01 7.76e—02 6.40e—02 2.61 9.48e-01 1.52e+01 5.25
FDR-PSO 1.40e—-01 4.38e-01 1.44e-01 7.84e—-02 3.34e-01 3.90e-01 9.25 2.50
FIPS 2.25e-15 1.54e-15 1.70e-01 1.26e-01 5.93e-14 1.86e-13 1.20e+01 6.22
CPSO-H 1.36 8.85e-01 1.20e-01 8.07e-02 435 1.35 2.67e+01 1.06
CLPSO 3.65e—05 1.57e—-04 4.50e—02 3.08e—02 3.72e-10 4.40e—-10 5.97 2.88
0PSO 1.89 8.59e-01 4.37e—02 4.92e-02 8.65 1.23 9.02e+01 4.41e+01
GOPSO 9.59e-13 0 0 0 2.64e-13 2.45e-13 (1} 0

Table 3 shows the statistical comparison of the GOPSO algorithm to the other eight PSO algorithms using a two-tailed t-
test with 58 degrees of freedom at a 0.05 level of significance. The performance difference is significant if the absolute value
of the t-test result is greater than 2. It can be seen from the t-test results that most of them are less than —2. Generally speak-
ing, GOPSO is significantly better than the compared algorithms on the majority of test functions.

To compare the performance of multiple algorithms on this test suite, the average ranking of the Friedman test is con-
ducted by the suggestions considered in [12,13]. Table 4 shows the average ranking of the nine PSO algorithms on functions
f1 — f12- These algorithms can be sorted by average ranking into the following order: GOPSO, CLPSO, FDR-PSO, CPSO-H, PSO-
w, FIPS, UPSO, PSO-cf, and OPSO. The best average ranking is obtained by the GOPSO algorithm.

To compare the performance differences between GOPSO and the other eight PSO algorithms, we conduct a Wilcoxon
signed-ranks test [9,14]. Table 5 shows the resultant p-values when comparing between GOPSO and the other eight algo-
rithms. The p-values below 0.05 are shown in bold. From the results, it can be seen that GOPSO is significantly better than
all algorithms except for CPSO-H. Although GOPSO is not significantly better than CPSO-H, GOPSO performs better than
CPSO-H according to the average rankings shown in Table 4.

Results analysis - GOPSO shows better performance than the other PSO variants on a majority of the test problems. GOBL
can provide a higher chance of finding better solutions than OBL, for OPSO. The random GOBL used in GOPSO is more flexible
than the OBL used for OPSO because random GOBL has a larger search range than OBL, but the same size of search range for
each generation.

Assume that x is the current candidate solution, X’ is the opposite candidate solution of x in OPSO, and x* is the trans-
formed candidate of x in GOPSO, where x € [a,b] and b > a > 0. The search range of x’ satisfies a < ¥’ < b, and the search range
of x* satisfies k(a+b) — b < x* < k(a +b) — a, where k € [0,1]. It is easy to deduce

<a, (15)
<b. (16)

-b<
—-a<
Hence, the search range of x* satisfies —b < x* < b. For the whole search process, random GOBL has a larger search range than
OBL, while both of them have the same size of search range (b — a) for every transformation. To give a clear explanation,

Fig. 3 presents the comparison of search range between OBL and GOBL schemes.
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Table 3
The t-test results between GOPSO and the other eight PSO algorithms, where “~~" means the results of each run is the same.
Functions PSO-w PSO-cf UPSO FDR-PSO FIPS CPSO-H CLPSO OPSO
fi —2.14269 —5.96409 —7.2508 —1.74698 —21.5406 —2.17588 —4.70397 —3.61407
> —3.16184 9.89816 —-1.30788 25.7271 -54.1174 5.24165 —9.27484 4.2949
fz —-17.4161 —7.16646 3.42184 —31.1009 —28.73 —22.6051 11.8157 —5.72432
fa —6.21925 —5.93847 —2.96163 —4.49756 —3.39764 —5.52287 —3.70657 —3.95232
fs —2.15752 —-10.2076 -13.9104 —3.59863 —5.69927 2.60105 -9.38718 —14.1575
fs —20.6285 —31.5389 —29.586 —1.78592 —32.245 e —7.31806 —18.9708
fz -11.7031 -13.6931 —28.0045 —1.25592 —3.98821 -1.7333 -9.78717 —4.88876
fs 0.691078 —22.9385 —39.6268 —37.7249 —5.10642 1.02874 33.3906 —4.75733
fo —2.6171 —5.76805 —5.90855 -1.75071 3402.82 —8.41698 —-1.27337 —12.0512
fio —9.55601 —7.06409 —6.64114 —10.0602 —7.38991 —8.14457 —8.00244 —4.86493
fin —5.12336 —9.14275 —-15.0797 —4.69075 3.64489 —17.6488 —4.62746 —38.5187
fiz —14.4214 —13.0583 —15.8579 —20.2657 -10.567 —137.964 —11.3538 —11.2029
Table 4
Average rankings of the nine PSO algorithms.
Algorithm Ranking
GOPSO 7.96
CLPSO 6.83
FDR-PSO 5.67
CPSO-H 5.38
PSO-w 4.50
FIPS 4.08
UPSO 3.75
PSO-cf 3.58
OPSO 3.25
Table 5

Wilcoxon test between GOPSO and other eight PSO variants on
functions f; — fi2. The p-values below 0.05 are shown in bold.

GOPSO vs. p-values
PSO-w 0.034
PSO-cf 0.012
UPSO 0.004
FDR-PSO 0.019
FIPS 0.005
CPSO-H 0.374
CLPSO 0.041
OPSO 0.012

8. Experiments on shifted and large scale problems
8.1. Test problems

In order to further verify the performance of GOPSO, this section presents a comparative study of GOPSO on six shifted
and large scale problems, which are considered in CEC 2008 special session and competition on large scale global optimiza-
tion [31]. According to their properties, there are two unimodal functions (F; — F,) and four multimodal functions (F; — Fg).
All functions are shifted by a random point O = [04,0,,...,0p] in D-dimensional search space. The employed shifted points in
this paper are also provided by the above mentioned session [31]. In this paper, we mainly focus on large scale problems
with D = 100. All the functions used in the following experiments are to be minimized. The description of the six benchmark
functions and their properties are as follows.

F: shifted sphere function

D
Fi(X) =>_Z} +f bias,,
i=1

where D=100, Xe[-100,100], Z=(X—0), X=[x1,X2,...,Xp], O=[01,0,,...,0p], and the global optimum F;(X°)=
f_bias; = —450 at X° = 0.
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Fig. 3. The comparison of OBL with GOBL coverage intervals.

Problem properties: unimodal, shifted, separable, and scalable.
F,: Schwefel’s problem 2.21

F(X) = max;{|Z;],1 < i < n} + f_bias,,

where D =100, X € [-100,100], Z= (X — O), X = [X1,X2,...,Xp], O=[01,02,...,0p], and the global optimum F,(X°) = f_bias, =
— 450 at X°=0.
Problem properties: unimodal, shifted, non-separable, and scalable.

F5: shifted Rosenbrock’s function

IXD]: 100(zi1 - 22)" + (1-22)") + bias,

where D =100, X € [-100,100], Z = (X — 0), X = [X1,X2,. . .,Xp], O = [01,0,. . .,0p], and the global optimum F5(X°) = f_bias; = 390
at X°=0.
Problem properties: multimodal, shifted, non-separable, scalable, and having a very narrow valley from local optimum to
global optimum.
F4: shifted Rastrigins function
D
=Y [Z} — 10cos 27Z; + 10] + f biasa,

i=1

where D =100,X € [-5,5], Z=(X — 0), X = [x1,X2,...,Xp], O =[01,0,,...,0p], and the global optimum F4(X°) = f_bias, = —330 at
X°=0.
Problem properties: multimodal, shifted, separable, scalable, and having a huge number of local optima.

F5: shifted Griewank’s function

D

%ZD: Hc < )+1+fbla55

i=

where D =100, X € [-600,600], Z= (X — 0), X = [x1,Xa,...,Xp], O=[01,05,...,0p], and the global optimum Fs(X°) = f_biass =
—180 at X°=0.
Problem properties: multimodal, shifted, non-separable, and scalable.

Fs: shifted Ackley’s function

D
Fs(X) = —20exp (0.2 %Z ,2) —exp ( Z cos(27Z;) ) 420 + e + f_biasg,
i=1

where D =100, X € [-32,32], Z=(X — 0), X =[X1,X2,...,Xp], 0 =[01,03,...,0p], and the global optimum Fg(X°) = f_biass = —140
at X°=0.
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Problem properties: multimodal, shifted, separable, and scalable.

In the past two decades, different kinds of evolutionary methods have been proposed to solve optimization problems, e.g.,
EAs, differential evolution (DE), PSO, Ant Colony Optimization (ACO), Estimation of Distribution Algorithm (EDA), etc.
Although these approaches have shown good optimization performance when dealing with some lower dimensional prob-
lems (D < 100), many of them suffers from the “curse of dimensionality”, which implies that their performance deteriorates
quickly as the dimension increases. The main reason is that the complexity of the problem and search space increase with
problem dimensionality. The previous population-based methods may lack the power of searching the optima solution. So,
more efficient search strategies are required to explore all the promising regions in a given time budget [31]. Yang et al. [42]
combined cooperative co-evolution and self-adaptive neighborhood search DE (SaNSDE) to solve large scale problems. Hsieh
et al. [15] presented an efficient population utilization strategy for PSO (EPUS-PSO) to manage the population size. Brest et al.
[3] introduced a population size reduction mechanism into self-adaptive DE, where the population size decreases during the
evolutionary process. Tseng and Chen [34] presented multiple trajectory search (MTS) by using multiple agents to search the
solution space concurrently. Zhao et al. [43] used dynamic multi-swarm PSO with local search (DMS-PSO) for large scale
problems. Wang and Li [40] proposed a univariate EDA (LSEDA-gl) by sampling under mixed Gaussian and 1évy probability
distribution.

8.2. GOPSO with dynamic population size (DP-GOPSO)

To solve large scale problems, we modify the original GOPSO by introducing a dynamic population (DP) mechanism. The
new approach is called DP-GOPSO, in which the population size is variable, because the DP method can increase or decrease
the number of particles in terms of the search status of the current population. If the population cannot find a better particle
to update the global best particle gbest in m generations, particles maybe have been trapped in a local optimum. Under this
circumstance, dependence on the original velocity and position equations will hardly help a particle jump out of the local
optima. The proposed method aims to introduce new potential solutions (particles) to escape such situations. In order to
avoid unlimited increase in particles, the current population size must have an upper limit, max_ps. The implementation
of the DP mechanism includes three steps which are described as follows:

(1) If the gbest has no change in m generations, and if the current population size (c_ps) is less than max_ps, a new particle
will be added into the current population, and then c_ps = c_ps + 1. The new particle is generated by:

X; = ripbest; X; + rapbest,, .x; + r3pbest;, x;, (17)
v; = ripbest; .v; + ropbest;, .v; + r3pbest;. .v;, (18)

where x and v are the position and velocity vector of the new particle, respectively. pbest; , pbest;, and pbest;, are three dif-
ferent previous best particles, iy, i, and i3 are different random integers within [0,c_ps — 1], ry, 1, and r3 are three different
random numbers in [0,1], where r; + r, + r3 = 1. The random numbers iy, iy, i3, 7, 1> and r3 are the same for all j=1,2,...,D,
and they are generated anew in each generation.
(2) If the gbest has been updated more than once in m generations, and if the c_ps is larger than min_ps, the worst particle
in the current population will be deleted, and then c_ps = c_ps — 1, where min_ps is a predefined lower boundary of the
population size. If c_ps=min_ps, the worst particle in the current swarm will be re-initialized as follows.

Xwj = TaXyj + Tsgbest.x; + repbest,, x;, (19)
Vwj = T4V + Isgbest.v; + repbest,,.v;, (20)

where x,, and v, are the position and velocity vectors of the worst particle, respectively. gbest is the global best particle,
pbest,, is the best of the worst particles and r4, rs and re are three different random numbers in [0,1], where
r4 + 15+ 16 = 1. The random numbers r4, s and rg are the same for all j=1,2,...,D, and they are generated anew in each gen-
eration. In this paper, min_ps is set to 5.
(3) If the global best particle (ghest) has no change in m generations, and if c_ps = max_ps, the worst particle in current
population will be re-initialized according to Egs. (19) and (20).

For the first case in DP, three different pbest particles are selected to recombine a new particle. So the minimum popu-
lation size should be no less than 3 (min_ps > 3). Our empirical studies led to setting min_ps to 5. The parameter m deter-
mines the monitoring frequency on the global best particle. A large m will not reflect the changes of gbest in time, while a
small m will cost much computational time to monitor the search status of the current population. When m is set to 1, the
population size will be adjusted in each generation. In this paper, m is set to 3. By the suggestions of [15], the maximum
population size max_ps is set to 30.

To illustrate the mechanism of the dynamic population size, Fig. 4 presents the changes of population size c_ps achieved
by DP-GOPSO on the Quadric function with 30 dimensions. The initial population size is set to min_ps = 5, and the maximum
population size max_ps is set to 30. The DP mechanism adjusts the population size according to the current state of the global
best particle.
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Fig. 4. The changes of population size for DP-GOPSO when solving the Quadric function with 30 dimensions.

Algorithm 2. The Framework of DP-GOPSO

1 Initialization (the same as GOPSO);

2 while NE < MAXNE do

3 Execute GOPSO algorithm (see Algorithm 1);

4 Conduct the dynamic population mechanism (see the 3 steps described in Section 8.2);
5 Update the pbest and gbest in current population;

6 end

The framework of DP-GOPSO is shown in Algorithm 2. The DP-GOPSO can be regarded as a simple combination of GOPSO
and the DP mechanism. We only introduce a DP mechanism to manage the population size of GOPSO.

8.3. Parameter settings

In these experiments, we compared GOPSO and DP-GOPSO with OPSO [37], dynamic multi-swarm PSO (DMS-PSO) [43]
and EPUS-PSO [15]. To have a fair comparison, we used the common parameter settings: DMS-PSO and EPUS-PSO used the
original parameter settings in [15,43]. For OPSO, GOPSO and DP-GOPSO, ¢; = ¢, = 1.49618, w = 0.72984, ps = 30 (except for
DP-GOPSO0), and the maximum velocity V. was set to the half range of the search space on each dimension. The probability
of GOBL in GOPSO and the probability of opposition-based generation jumping in OPSO use the same value p, = 0.3. For DP-
GOPSO, m = 3, max_ps = 30 and min_ps = 5. By the suggestions of [31], we use the same maximum number of evaluations
(MAXng = 5000 * D = 500,000). All experiments are run 25 times and we record the mean and standard deviation of

fx) = fix°).
8.4. Results and discussions

In this section, we have two series of comparisons: (1) comparisons of DP-GOPSO with PSO, OPSO and GOPSO; (2) com-
parison of DP-GOPSO with DMS-PSO and EPUS-PSO, where DMS-PSO and EPUS-PSO results have been published in CEC 2008
Special Session and Competition on Large Scale Global Optimization [31]. The first comparison aims to check whether oppo-
sition and DP mechanism work well on large scale problems. The second comparison focuses on investigating how good DP-
GOPSO is within the similar context of PSO variants.

The results of the two comparisons are presented in Tables 6 and 7, respectively. Table 8 shows the statistical compar-
isons of the DP-GOPSO with the other five PSO algorithms, using a two-tailed t-test with 48 degrees of freedom at a 0.05
level of significance. In all the t-test results the performance difference is significant if the absolute value of the t-test result
is greater than 2.009. Tables 9 and 10 present the average ranking of the six PSO algorithms and the p-values of applying a
Wilcoxon test among DP-GOPSO and other five PSO algorithms, respectively.

(1) Comparison of DP-GOPSO with PSO, OPSO and GOPSO: Table 6 presents the mean and standard deviation of the 25
runs for PSO, OPSO, GOPSO and DP-GOPSO. It can be seen that DP-GOPSO outperforms PSO, OPSO and GOPSO in all
test cases. GOPSO and OPSO performs better than PSO except on function Fs;. On this function, GOPSO and OPSO
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Table 6
Comparison among PSO, OPSO, GOPSO and DP-GOPSO on six shifted and large scale problems (D = 100), where “Mean” indicates the mean function error value,
and “Std Dev” stands for the standard deviation. The best results among the comparison are shown in bold.

Functions PSO OPSO [37] GOPSO DP-GOPSO
Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

F, 2.37e+04 4.59e+03 3.64e+03 6.57e+02 3.43e+03 4.82e+02 8.75e+02 9.33e+01
F, 5.31e+01 6.83 3.52e+01 4.24 3.37e+01 3.63 1.53e+01 3.17

F3 1.59e+02 8.85e+01 4.86e+07 7.21e+06 4.53e+07 8.41e+06 1.49e+02 7.96e+01
F4 6.16e+02 1.92e+02 4.72e+02 1.13e+02 4.24e+02 5.09e+01 3.48e+02 5.73e+01
Fs 1.17e+02 3.95e+01 2.28 1.47e-01 2.15 1.73e-01 1.18 7.28e—01
Fs 1.76e+01 1.48 1.31e+01 7.48e—01 1.36e+01 4.93e-01 1.62 2.75e-01

Table 7

Comparison among DMS-PSO, EPUS-PSO and DP-GOPSO on six shifted and large scale problems (D = 100), where “Mean” indicates the mean function error
value, and “Std Dev” stands for the standard deviation. The best results among the comparison are shown in bold.

Functions DMS-PSO [43] EPUS-PSO [15] DP-GOPSO
Mean Std Dev Mean Std Dev Mean Std Dev
F; 0 1} 7.47e-01 1.07e-01 8.75e+02 9.33e+01
F, 3.65 7.30e—-01 1.86e+01 2.26 1.53e+01 3.17
F3 2.83e+02 9.40e+02 4.99e+03 4.71e+02 1.49e+02 7.96e+01
Fy 1.83e+02 2.16e+01 4.71e+02 5.94e+01 3.48e+02 5.73e+01
Fs 0 0 3.72e-01 5.60e—02 1.18 7.28e-01
Fs 0 0 2.06 4.40e-01 1.62 2.75e-01
Table 8
The t-test results between DP-GOPSO and the other five PSO algorithms.
Functions PSO 0PSO GOPSO DMS-PSO [43] EPUS-PSO [15]
F —14.1415 -22.8221 —28.5047 51.3673 51.3234
F —58.7466 —20.5887 -20.9119 19.6158 —4.64275
F3 —0.47093 —36.9199 —29.5027 —0.778011 —55.5085
F, -16.1162 —5.36061 —5.4313 14.7583 -8.16281
Fs —11.4498 -8.1123 —7.10022 8.87792 6.06121
Fs —71.6627 —78.899 -116.237 32.2658 —4.6446
Table 9
Average rankings of the six PSO algorithms on large scale problems.
Algorithm Ranking
DMS-PSO 5.67
DP-GOPSO 4.83
EPUS-PSO 4.00
GOPSO 2.83
OPSO 2.00
PSO 1.67
Table 10
Wilcoxon test between DP-GOPSO and the other five PSO variants on large scale problems. The p-values below 0.05 are shown in
bold.
DP-GOPSO vs. p-values
PSO 0.028
0PSO 0.028
GOPSO 0.028
DMS-PSO 0.173
EPUS-PSO 0.463

perform worse and the search almost stagnates. It seems that opposition hinders the search of finding better solutions
in this case. From the t-test results listed in Table 8, the DP-GOPSO is significantly better than OPSO and GOPSO,
because the values of the t-test are less than —2.009. DP-GOPSO is significantly better than PSO except for unction



4712 H. Wang et al./Information Sciences 181 (2011) 4699-4714
13.04 5.0 -
125 =—PSO 48, —=—PSO
E —o— OPSO —o— OPSO
120 —A— GOPSO 46\, —&— GOPSO
1.5+ —*— DP-GOPSO 444 —x— DP-GOPSO

Mean Function Error Value (log) Mean Function Error Value (log)

Mean Function Error Value (log)

Mean Function Error Value (log)
S
1

3.4+
3.24
3.0+
2.8+
2.6+
T T T T 1 24 T T T T 1
0 100000 200000 300000 400000 500000 0 100000 200000 300000 400000 500000
Number of Function Evaluations (F,) Number of Function Evaluations (F,)
(a) Fi (b) F>
8.0
25 4 —a— PSO = PSO

—o—OPSO —o— OPSO

—&— GOPSO —4— GOPSO

—*%— DP-GOPSO 7.5+ —*— DP-GOPSO

Mean Function Error Value (log)

1 T T T T 1
500000 0 100000 200000 300000 400000 500000

T T T T
0 100000 200000 300000 400000
Number of Function Evaluations (F,) Number of Function Evaluations (F,)
(c) F3 (d) Fy

8.0 5.0

758 —8— PSO —=— PSO

7.0 —o— OPSO 4.5+ o— OPSO

6.5 —&— GOPSO 404 —2— GOPSO

60 —x— DP-GOPSO ' —x— DP-GOPSO
3.5

Mean Function Error Value (log)

- - - - - 0.0 - - - - -
T T T T T 1 T T T T 1
0 100000 200000 300000 400000 500000 0 100000 200000 300000 400000 500000
Number of Function Evaluations (F,) Number of Function Evaluations (F,)
(e) Fs (f) Fe

Fig. 5. The convergence trend of PSO, OPSO, GOPSO and DP-GOPSO on shifted and large-scale problems.

Fs. On this function, both DP-GOPSO and PSO almost have the same performance. From the convergence trend of PSO,
OPSO, GOPSO and DP-GOPSO as given in Fig. 5, DP-GOPSO converges faster than the other three algorithms on all test
functions except for Fs. On this function, OPSO, GOPSO and DP-GOPSO almost have the same convergence rate.
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From the comparisons of PSO, OPSO and GOPSO, it can be seen that opposition does not work well for all kinds of prob-
lems. For function F3, both OPSO and GOPSO perform much worse. That is because F3 is a multimodal, shifted and non-
separable function with a narrow valley from local to global optimum. A small change added to a particle will help the
particle to escape from a local optimum. Finally, opposition hinders the search for good solutions during the evolution.
Maybe opposition is effective when the global optimum is far away from local minima. Under this case, opposition is
helpful to generate good solutions, which may force the particle to jump to a better position.

With the help of the dynamic population mechanism, the DP-GOPSO achieves better results than GOPSO and PSO. The
DP mechanism manages the population size in the whole searching process. When the current population can contin-
uously find better solutions (the gbest has changes), a smaller size population will be enough. When searching with the
current population stagnates (the gbest has no change), new power (add a new particle or re-initialized the worst par-
ticle) will be introduced for the population to push the search forward.

(2) Comparisons of DP-GOPSO with DMS-PSO and EPUS-PSO: Table 7 presents the mean and standard deviation of the 25
runs of DMS-PSO, EPUS-PSO and DP-GOPSO. It can be seen that DMS-PSO outperforms EPUS-PSO and DP-GOPSO
except on F;. DP-GOPSO performs better than EPUS-PSO on F,, F3, F4 and Fs. DMS-PSO shows excellent search abilities
on Fy, Fs and Fs. On these functions, DMS-PSO can find the global optimum, while EPUS-PSO and DP-GOPSO fall into
the local minima. From the t-test results listed in Table 8, the DMS-PSO is significantly better than DP-GOPSO except
on F3 because these values of the t-test are greater than 2.009. On function F3;, DP-GOPSO and DMS-PSO almost have
the same result. EPUS-PSO is significantly better than DP-GOPSO on F; and Fs, while DP-GOPSO is significantly better
than EPUS-PSO on the rest 4 functions.

(3) From the results in Table 9, the six algorithms can be sorted by average ranking into the following order: DMS-PSO,
DP-GOPSO, EPUS-PSO, GOPSO, OPSO, and PSO. DP-GOPSO obtains the second place, which outperforms the other four
PSO algorithms. From the results in Table 10, DP-GOPSO outperforms GOPSO, OPSO, and PSO. Though DP-GOPSO per-
forms better than EPUS-PSO according to the results of average rankings, DP-GOPSO is not better than EPUS-PSO.
Compared with other similar PSO variants (DMS-PSO and EPUS-PSO), DP-GOPSO and EPUS-PSO show a poor perfor-
mance on shifted and large scale problems. DP-GOPSO only performs better on F3 than two other algorithms. That
can be due to the DP mechanism, but not the opposition. Because GOPSO performs much worse on this function. It
suggests that GOPSO, DP-GOPSO and EPUS-PSO are not good choices to solve shifted and large scale problems.
However, our claim is not to introduce the fastest and most robust population-based algorithm, but to develop an
acceleration scheme (GOBL) to make them faster. In this direction, PSO has been selected as a case study. That is
why we compare the proposed GOPSO algorithm with other variants of PSO.

9. Conclusion

This paper presents an enhanced PSO algorithm called GOPSO by using generalized opposition-based learning and Cauchy
mutation. The GOBL sampling scheme could provide more chance of finding better solutions by transforming candidate solu-
tions from current population into a new search space. With the help of a new elite selection mechanism, we can select bet-
ter particles after this transformation. The Cauchy mutation with a long tail may help trapped particles to jump out of local
minima. From the analysis and experiments, we observe that the GOBL and Cauchy mutation enables the GOPSO to achieve
better results on unrotated multimodal and rotated multimodal problems when GOPSO is compared with eight other PSO
variants. In order to deal with shifted and large scale problems, we proposed an improved GOPSO (DP-GOPSO) by introduc-
ing a new dynamic population technique. Experimental results show that DP-GOPSO outperforms PSO, OPSO, GOPSO and
EPUS-PSO, while DMS-PSO performs much better than DP-GOPSO.

However, GOPSO is not suitable for all kinds of problems. For instance, GOPSO fails to solve f,, fg and most of the large
scale problems. Although DP-GOPSO performs better than EPUS-PSO on 4 functions, DP-GOPSO is not a good choice to solve
shifted and large scale problems when it is compared with DMS-PSO.

GOBL is used to accelerate the convergence speed by simultaneously evaluating the current population and the opposite
population. The experimental results show that GOBL plays an important role in solving unrotated multimodal and rotated
multimodal problems, but performs badly on shifted and large scale problems. Possible future work is to investigate the
effectiveness of GOBL on many other different kinds of problems.
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